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The problem of determining the slow viscous flow of an unbounded fluid past a 
single solid particle is formulated exactly as a system of linear integral equations 
of the first kind for a distribution of Stokeslets over the particle surface. The 
unknown density of Stokeslets is identical with the surface-stress force and can 
be obtained numerically by reducing the integral equations to a system of linear 
algebraic equations. This appears to be an efficient way of determining solutions 
for several external flows past a particle, since it requires that the matrix of the 
algebraic system be inverted only once for a given particle. 

The technique was tested successfully against. the analytic solutions for 
spheroids in uniform and simple shear flows, and was then applied to two prob- 
lems involving the motion of finite circular cylinders: (i) a cylinder translating 
parallel to its axis, for which the local stress force distribution and the drag were 
determined; and (ii) the equivalent axis ratio of a freely suspended cylinder, 
which was calculated by determining the couple ong stationary cylinder placed 
symmetrically in two different simple shear flows. The numerical results were 
found to be consistent with the asymptotic analysis of Cox (1970, 1971) and in 
excellent agreement with the experiments of Anczurowski & Mason (1968), 
but not with those of Harris & Pittman (1975). 

1. Introduction 
Although the classical Stokes-flow problem of the motion of an inertialess un- 

bounded fluid past a single body has been studied for more than 100 years, 
analytical solutions have been obtained only for special geometries. For example, 
Stokes (1851) solved the problem of a translating sphere, Oberbeck (1876) 
extended this result to an ellipsoid translating parallel to its axis, while Jeffery 
(1922) obtailled the solution for an ellipsoid immersed in a general linear flow 
field. More recently, solutions have been derived for bodies which correspond to 
a co-ordinate surface of one of the special orthogonal co-ordinate systems in 
which the Stokes equations are simply separable (see Payne & Pel1 1960; Nir & 
Acrivos 1973). Additionally, Stokes-flow theory has been extensively developed 
for flow past long slender bodies (Batchelor 1970; Cox 1970, 1971) and for flow 
past slightly deformed spheres (Taylor & Acrivos 1964; Brenner 1964a). 

No analytic solutions are at present available, however, for general body 
shapes and, indeed, none has been found for the apparently simple geometry of 
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a cylinder translating parallel to its axis. Thus, to describe Stokes flow past 
general bodies, it is usually necessary to resort to a numerical approach. 

Of course, it should in principle be possible to use a conventional finite- 
difference scheme, but unfortunately the integration domain would have to be 
made very large relative to the particle size since the absence of any inertial 
effects results in slow algebraic decay in all directions of any disturbance pro- 
duced by the body. Gluckman, Weinbaum & Pfeffer (1972) presented two 
striking illustrations of this effect and concluded that it would normally be 
impractical to employ finite-difference methods for infinite-domain Stokes 
problems. 

Fortunately, the linearity of the Stokes equations suggests an approach 
based on superposition to take advantage of this linearity, and indeed, consider- 
able work has been done using different schemes based on the method of weighted 
residuals. Thus, for axisymmetric flow past nearly spherical particles, O’Brien 
(1968) expanded the stream function as a truncated power series in Sampson’s 
(1  891) separable solutions written in spherical co-ordinates and, using a boundary 
collocation method (Finlayson 1972, p. ll), satisfied the no-slip boundary 
condition a t  selected collocation points. Similarly, for flow past a three-dimen- 
sional, nearly spherical particle, Rosen (1972) expressed the velocity field in 
terms of Lamb’s (1932, p. 595) general solution, truncated the series and mini- 
mized the mean-square error in satisfyiFg the no-slip condition. However, the 
range of validity of weighted residual methods is limited, as was illustrated by 
Gluckman et al. (1972), who attempted to extend O’Brien’s approach to more 
elongated spheroids and found that, for a prolate spheroid with an axis ratio of 
2.0, the numerically calculated drag oscillated unstably as the number of collo- 
cation points was increased. This difficylty was resolved by Bowen & Masliyah 
(1973), who expressed the stream function in terms of Sampson’s separable 
solutions written in spheroidal co-ordinates and performed a least-squares fit to 
satisfy approximately the no-slip condition. With this technique, numerically 
calculated values of the drag for extended spheroids compared very well with 
the exact analytical results. Nevertheless, it is not clear how well this method 
would succeed with particles which are not approximately spheroidal. 

Using a slightly different approach, Gluckman et al. (1972) observed that any 
convex body of revolution may be approximated by a finite number of touching 
oblate spheroids with very large aspect ratios. Since the solution for axisym- 
metric flow past an individual oblate spheroid is given by an infinite series of 
Legendre polynomials (Sampson 1891), by superposition, the flow past the 
assembly of spheroids can be expressed as a double sum. By truncating the 
infinite series and employing a boundary collocation scheme, Gluckman et at. 
obtained an approximate solution for which the computed drag agreed very 
well with the analytical results for spheroids. Drag results for cylinders and 
cones were also presented. 

Thus, a number of numerical schemes have been proposed for axisymmetric 
flows past axisymmetric bodies which are either convex or approximately 
spheroidal, or for three-dimensional flows past nearly spherical bodies, but none 
of these methods is general in the sense that it can handle each of these three 
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FIGURE 1. Stokes flow past an arbitrary particle. 

problems or, which is of even more significance, the general three-dimensional 
case. 

The work of Hunt (1968) and Smith & Hess (1966) on potential flow, Cruse 
(1969) in elastostatics and Chang, Kang & Chen (1973) on heat conduction 
suggests, however, that an integral-equation approach to the Stokes problem 
might be appropriate. In  this method, the fundamental singular sohtions of 
the governing differential equations are continuously distributed over the 
boundaries of the problem, and the boundary conditions then lead to integral 
equations for the densities of the fundamental solutions. Thus, the solution of a 
differential equation in n dimensions is reduced to the solution of an integral 
equation in n- 1 dimensions. In  addition to reducing the dimensions of the 
problem, this method is attractive for Stokes problems since it is a very general 
approach independent of the body geometry and the form of the external flow 
field. To be sure, analytical solution of the integral equati6ns is, in general, not 
possible, but these can be solved numerically. The philosophy and advantages 
of recasting the solution in integral form were discussed in detail by Gluckman 
et al. (1972), who described such an approach (though they did not use the fun- 
damental singular solution) for axisymmetric flow past convex bodies although, 
in the end, they only made use of the aforementioned collocation procedure for 
their numerical experiments. 

2. Formulation of problem 

surface S, (figure 1) is described by 
The problem of creeping flow in a domain Q past an arbitrary particle P with 

a 2 V i ( x )  ap(x)  avi(x) 
axiaxi axi axi 
-=- -- - 0, X E a ,  
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where all the variables are dimensionless and the usual Cartesian tensor sum- 
mation convention is adopted. The reduction of the solution of (2.1) and (2.2) 
to the solution of a system of integral equations is well known and, as described 
by Ladyzhenskaya (1963, p. 49), forms the basis of Odqvist’s (1930) proof of 
the existence and uniqueness of a solution to (2.1) and (2.2). 

The fundamental singular solution of (2.1) is 

where yZg = Ix - yI. It is clear that, as a function of x ,  (2.3) solves (2.1) for x =I= y 
and has the appropriate singular behaviour at x = y. Physically, u i j ( x , y )  
represents the ith velocity component a t  x due to a unit force (commonly 
referred to as a Stokeslet) in the j direction applied a t  y ,  while pi represents the 
associated pressure a t  x. 

Next, by defining the shear-stress tensor {qj}, 
T,,(v) = - sijp + avi/axj + avj/axi, (2.4) 

and using the divergence theorem, one can easily obtain what might be called 
Green’s formula for the Stokes problem for smooth solenoidal vectors u and v 
and smooth scalars p and q in the bounded domain E with bpundary aE: 

where !l&[u(x)] = - Si,q + aui/axi + au,/ax, and where dS, indicates that the 
integration over aE is with respect to the point x. Then, by replacing (ui,q) 
with the fundamental solutions (u,,,p,), identifying vi andp with the solution to 
(2.1) and using the facts that vi(x) = O(lx1-1) and p ( x )  = O ( l ~ l - ~ ) ,  as 1x1 +CO, 

Green’s representation formula (or Green’s third identity) for the Stokes prob- 
~ 

lem follows readily : 
V i ( X )  = V p ( x )  + V:Z’(x), 
p ( x )  = P q x )  +P@’(X), 

where 
r c  

(2.7a) 

( 2 . 7 ~ )  
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f k ( Y )  'k j [v (Y) l  n j (y) .  (2 .7e )  

( Vil), P(Q) and ( Vi2), P(2)) are termed single and double-layer potentials, with 
densities f k  and vk respectively by analogy with the corresponding potentials 
from potential theory. f k  is the local surface-stress force and ni is the inward 
normal to the particle. 

The combinations ( VL1)(x), P ( x ) )  and ( Vi2)(x), P2)(x)) individually satisfy 
(2.1) for x ~ s 2  and thus (2.6) is a solution of (2.1). Furthermore, since Vc,l)(x), 
Vi2)(x), P(l)(x) and Pt2)(x) all tend to zero at  infinity, it  only remains to satisfy 
the no-slip condition. Odqvist showed that if one attempts to express vi(x) 
solely in terms of double-layer potentials (with densities not, in general, equal 
to vk), the integral equation of the second kind that results on applying the no- 
slip condition has six eigensolutions. Thus, in general, vi(x) cannot be repre- 
sented in terms of double-layer potentials alone, but rather must be written in 
terms of the six single-layer potentials, with the eigensolutions of the adjoint 
integral equation as densities, plus the double-layer potentials. However, since 
the eigensolutions of the adjoint equation are in general unknown, this approach 
is not convenient for computational purposes. Although such a difficulty does 
not result if vi(x) is written using only single-layer potentials with density $k 

(or, stated in more familiar terms, as a distribution of Stokeslets over the particle 
surface), the essentially equivalent approach of deriving the appropriate integral 
equations starting with (2.6), thus retaining the double-layer potential terms, 
will be employed here since this identifies the unknown densities in the resulting 
integral equations with the local stress force f k .  

The single-layer potentials Vil)(x) are continuous in the entire space if the 
densities f k  are continuous, which will be true if S, is, as will be assumed, a 
Lyapunov surface (Giinter 1967, p. 7; for surfaces of practical interest this 
requires the surface to have a well-defined tangent plane at all points). How- 
ever, the double-layer potentials Vi2,(x) are not continuous at S, but suffer a 
jump given by (Odqvist 1930) 

lim Vi2)(x) = VL2)(xo) + &(xo), X E  Q, x,ES,. 
f+X" 

Using these facts, the no-slip condition leads then to the following linear integral 
equations of the first kind for the densities f k :  

It is not difficult to see that the integrals in these equations, though improper 
for x = y ,  do exist if S, is a Lyapunov surface. Since, as shown in appendix A, 
equations (2.9) have a unique solution for all Q(x), it follows that the solution 
of (2.1) and (2.2) has been reduced to the solution of (2.9). 

Thus when the Stokes problem is formulated in this manner, the stress force 
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distribution, which is normally the quantity of interest in such calculations, is 
determined directly. This is in contrast to other methods, which yield directly 
the coefficients in a (truncated) infinite series for the velocity or stream function, 
coefficients which normally are of only limited quantitative importance. Further- 
more, as shown in $4, the present method yields accurate local stress forces fi, 
whereas the success of other schemes has only been demonstrated to date in 
terms of computed integral properties such as the drag. 

Equations (2.9) simplify for the cases of uniform flow at infinity and axisym- 
metric flow. Specifically, if U,(x) is a constant %, then it can be shown using 
(2.5) that 

and hence (2.9) reduces to 

It is of interest to point out that, had the velocity field been expressed solely in 
terms of single-layer potentials, (2.1 1)  would have followed immediately since, 
as noted above, the single-layer potentials are continuous across S,. However, 
the above arguments serve to show that the densities of the potential layers in 
(2.11) are equal to the surface-stress force. 

For uniform flow at infinity in direction 1 parallei to the axis of an axisym- 
metric body, (2.11) reduces to a one-dimensional integral equation. Specifically 
if the uniform flow has speed W,, iff, is the radial component off in a cylindrical 
co-ordinate system with axis in the 1 direction and if the particle surface in 
terms of cylindrical co-ordinates is given by 

where - 1 < y1 < 1, R( f 1) = 0 and R(yl) is single valued, then the integration 
in the azimuthal direction can be performed analytically. Thus, setting 

Yz = R(y1) cos 8, Y3 = Wl) sin 8, (2.12) 

(2.13) 
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where R' = dR/dy,, and F and E are, respectively, the complete elliptic integrals 
of the first and second kind with modulus k. 

3. Numerical solution 
Equations (2.9) and (2.14) can be solved numerically using the Krylov- 

Bogoliubov method (Kantorovich & Krylov 1958, p. 130)) which transforms the 
integral equations into a linear system of algebraic equations. This is accom- 
plished by dividing S, into N elements Am (m = 1,2 ,  . . . , N )  all of which are 
small relative to S, and over which the components off may, for the purposes 
of the integral equations, be considered constant and equal to their value at  
the centre of the element. The integral equations are satisfied at the centres 
x(")(m = 1,2,  .. ., N )  of each element, thereby yielding the numerical approxi- 
mations to (2.9): 

or 
N 

j=1 
gi(x(")) = A&f,(X'q (m-= 1,2,  ...) N ) ,  

where 

and 

The above form a linear system of 3N equations in the 3N unknowns f,(x('@). 
Similarly, the axisymmetric case is approximated by a 2 s  x 2N system which is 
easily obtained from (2.14). In  either case the algebraic system can be solved 
numerically using suitable integration and matrix inversion techniques. 

Even though, in deriving (2.9), it was necessary to assume that S, was a 
Lyapunov surface, no such restriction on S, is required to obtain (3.1), the 
discrete approximation. Indeed, each equation in (3.1) could have been obtained 
individually by taking the limit of (2.6) as x (in Q) approached each x(") under 
the milder restriction that AS, be smooth in the sense of Lyapunov at  each x("). 
This local Lyapunov condition also ensures that all the integrals in (3.1) exist. 
Therefore (3.1) applies to any particle which satisfies the Lyapunov conditions 
a t  each x("). 

Since the density fi is the local surface-stress force, the total force Fi and the 
couple acting on the particle are, respectively, 

N N 

=1 i=l A5 
I$ = - 2 fi(X(i)) j/Ajd~gT z = 13 fh(x(i))// eililkYldSy* (3.2) 
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while the velocity and pressure fields are given by, respectively, 
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I 

The most critical feature of the numerical solution is the accurate calculation 
of the various surface integrals over the elements A,, since it is these integrals 
which are the coefficients of thefk(xcm)) in the algebraic system. These integrals 
are sensitive functions of position for small Y ~ ( ~ ) ,  and are improper a t  y = x ( ~ ) .  

For a general three-dimensional particle, the co-ordinate system is first trans- 
formed to allow a simplification in the expression for the surface integrals. A 
cylindrical co-ordinate system with azimuthal angle 8 will be assumed for the 
purposes of this discussion. The direction of the axis is completely arbitrary 
and will be referred to as the 1 direction. The surface is next divided into N 
elements A, whose boundaries are lines of constant x1 and constant 8. In this 
way the surface elements become rectangular in xl, 8 co-ordinates, which is 
advantageous for two reasons. First, it simplifies the numerical calculation of 
the surface integrals since simple product integration schemes, based on any 
one-dimensional rule, are easily constructed for rectangular elements, and 
second, it is not necessary to give a precise definition of x ( ~ ) ,  the centre of Ant, 
since all reasonable definitions yield the geometric centre of the rectangle, a 
feature which does not necessarily hold for elements of arbitrary geometry. 
The numerical calculation of the surface integrals then presents no problems 
except whenj = m, in which case the integrals are improper since the integration 
is carried out over the element which contains x ( ~ ) .  In  this case, the integration 
is divided into two regions: integration over a small neighbourhood of x ( ~ ) ,  
whose exact dimensions are described below, and integration over the remainder 
of A,. To perform the crucial integration over the neighbourhood of x ( ~ ) ,  the 
surface is assumed to be locally flat, i.e. it  is approximated by the tangent plane 
a t  x(,). Then, by transforming to a local polar co-ordinate system lying in this 
tangent plane with origin at xcm), it is possible to integrate the various integrands 
in (3.1) analytically over this small neighbourhood, thereby obtaining the 
results summarized in appendix B. The neighbourhood is chosen such that, in 
terms of the local polar co-ordinate system, it is a square of side 2s. For the 
numerical experiments, the results were insensitive to B for E between 0.01 and 
0.20 times the smaller of the two sides of the rectangle Am. 

For axisymmetric flow (with the 1 direction taken as the axis of symmetry) 
past a body which is strictly convex, (2.14) may be used directly since the condi- 
tions required for its validity are satisfied. On the other hand, if, as in the case 
of a finite cylinder with axis in the I direction, R(y,) is not single valued, the 



Stokes fEow past an arbitrary particle 385 

surface integral in (2.11) is first split into domains of constant y1 and domains 
where R(yl) is single valued; the integration in the azimuthal direction is then 
performed analytically, and the surface integrals are thereby reduced to line 
integrals over yl and yp. In  either case, after dividing the resulting integral(s) to 
form the elements A,, the integrals over A, are calculated using an adaptive 
quadrature scheme (a scheme which systematically divides the integration 
interval into successively smaller subintervals until successive approximations 
to the integral differ by less than a specified allowable error) based on Simpson's 
rule with a Richardson extrapolation. The maximum allowable relative error is 
normally chosen as 10-4 or 10-5. In  the case of (2.14) i t  can be shown that the 
term in the first integrand involving B'( k )  in the equation for Wl and the term 
in the second integrand involving P(k)  in the homogeneous equation both be- 
come logarithmically infinite as y + x(,). These terms were handled by expanding 
P(k) for k+ 1 and then performing an analytical integration over a small neigh- 
bourhood of x(,) defined typically by rz(m)y less than or equal to times 
the characteristic dimension of Am. The remaining integrands all have finite 
limits as y+ x(,) and thus their evaluation presents no difficulties. 

The linear algebraic system, which is normally completely dense, was solved 
using standard Gaussian elimination followed by iterative improvement. The 
fact that (2.9) has a unique solution suggests, though it does not guarantee, 
that its discrete approximation, the algebraic system, should also have a unique 
solution. In  fact, for all bodies investigated, the system did have a unique 
solution. In  general, because of the singularity in the corresponding integrand, 
the diagonal terms are the largest in any row (or column) though not sufficiently 
large to make the matrix diagonally dominant. Since for large values of N a 
considerable part, or even the major part, of the coqputer time is spent inverting 
(or effectively inverting) the matrix {A!$), it  is worthwhile to note that since 
the matrix is a function of only the body geometry and not of the velocity field 
at infinity [which affects only gi(x@)) in (3.1)], it is only necessary to invert it 
once for all external flows past a given body. In  fact, once is known for 
a certain body, it is a simple matter to obtain the six solutions corresponding to 
pure translation along and pure rotation about each of the axes of the body and 
then employ the method of Brenner (1966) to calculate the complete translational 
and rotational symbolic resistances of the body and thus the net force and torque 
on the body in an arbitrary Stokes flow. 

An inherent difficulty in the numerical solution of integral equations of the 
first kind is that the problem is well known to be ill conditioned, in the sense 
that small errors in either g,(x(")) or A:$ can often produce relatively large errors 
in fi. However, as the results in the following section indicate, very accurate 
solutions were obtained with minimal difficulty, a fact which suggests that any 
ill conditioning that may exist is much less serious for these particular equations 
than for other integral equations of the first kind. 

FLM 69 
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FIGURE 2. Ratio of numerically calculated and analytic drags for spheroids 
xt + (xi + x:)/a2 = 1 in axisymmetric flow with N equally spaced points. 

4. Results 
Axisymmetric $ow8 

For any axisymmetric flow, the only parameters in the numerical solution are 
the number of points N at which the integral equations will be applied and the 
locations x ( ~ )  of these points. In  order to isolate clearly the effect of N ,  the non- 
optimal strategy of equal spacing (in the 1 direction) for the x(~) ,  which makes 
the solution a function of N only, was applied to the problem of a spheroid given 
by x;+ (xi+xg)/a2 = 1 translating in the 1 direction. A comparison of the 
numerical drag Fl with the analytic drag FT (analytic solutions will henceforth 
be denoted by an asterisk) is shown in figure 2, from which it can be seen that, 
for spheroids with axis ratios between 0.02 and 50.0, the error in the drag is less 
than 1 yo for N > 10. For a sphere, any choice of N results in essentially no error, 
which might be expected since f: is constant in this case. The error is greatest 
for very slender prolate spheroids, for which, as explained below, the policy 
of spacing the points x ( ~ )  a t  equal intervals is a poor one. 

A more critical evaluation of the numerical method is provided by a comparison 
of the numerically calculated local stress force with its analytic counterpart. 
This is eRected in figures 3 (a )  and (b ) ,  where it is evident that the greatest errors 
in fl occur, as expected, in regions where the gradient of fi is the largest (f,? is 
identically zero and f, is zero to the accuracy of the calculations). Figures 4 (a)  
and ( b )  indicate that the average (over N )  local error decreases rapidly with 
increasing N ,  while figures 5 (a )  and ( b )  give the maximum local error as a function 
of N .  The initially surprising result that the maximum error in fl for slender 
prolate spheroids increases with N up to a certain point before starting to de- 
crease results from the policy of equally spacing the points x(m). That is, for 
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slender prolate spheroids, the gradient in f: is very large near x1 = f 1.0 [in 
fact, f .(xl  = f 1.0) = O((a21na)-l) as a+ 01, and thus, as the number of equally 
spaced points along the axis is increased, those near x1 = $_ 1.0 move into a 
region of larger gradient in fl, with a resultant increase in error. When N be- 
comes sufficiently large, however, the maximum local error starts to decrease 

25-2 



388 

0.10 I I I I I 1 I I I 1 '  

(4 a=50 

0.08 - - 
10 

- 
0.06 - - 

k 5 

s I 

- 0.04 - - 

2 
0.02 - - 

I 

G .  K .  Youngren and A .  Bcrivos 

0 20 
N 

40 

FIGURE 4. Average relative error in stress force for (a) oblate and (b )  prolate 
spheroids in axisymmetric flow with N equally spaced points. 

with increasing N (numerical experiments indicate that for a = 0.02 the maxi- 
mum relative error in fi would increase to a value of approximately 0-08 at an 
N of 120 before starting to decrease). 

These results seem to suggest that the points x(~) should be concentrated in 
regions where the gradients of fi are the greatest, i.e. near the ends for prolate 
spheroids. This idea was tested by dividing a prolate spheroid of axis ratio 
0.10 into N equal segments as before and then inserting one additional point 
at  each end between the two points nearest the end. This policy, though certainly 
not optimal, results in the improvements shown in figures 6(a) and (b ) .  It is 
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FIGURE 5. Maximum relative error in stress force for (a) oblate and ( b )  prolate 

spheroids in axisymmetric flow with N equally spaced points. 

logical to expect, and this was confirmed by experiment, that by concentrating 
even more points near the ends the error could be reduced still further. For 
example, using 40 points for a = 0.1, the largest relative error in fl could be 
made less than 0.01. 

Numerical experiments were also performed for axisymmetric flow parallel 
to the axis of a finite cylinder. In  this case, since R(y,)  is not single valued, 
(2.14) no longer applies but rather must be replaced by its analogue obtained 
from (2.11) following the procedure outlined in the previous section. Neither 
the vertical faces a t  the ends of the cylinder nor the corners of the cylinder caused 
any difficulty as long as none of the x ( ~ )  were located on the corner. Gluckman 
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FIGURE 6. (a)  Ratio of numericdly calculated and analytic drags and ( b )  maximum relative 
error in stress force for two different policies for forming the surface elements. a = 0.1. 
A ,  equally spaced elements; B, one additional point near each end, otherwise equally 
spaced elements. 

et al. also obtained numerical solutions to this particular problem, though their 
method, in order to achieve good accuracy, requires that any vertical surfaces 
be treated differently from non-vertical surfaces. Also their method had to be 
modified for cylinders of aspect ratio 2 10, and even then it did not lead to 
convergence. As in Gluckman et a,?. the dimensionless drag K on a cylinder is 
defined as the ratio of the terminal settling velocity of the cylinder to that of 
a sphere with the same volume as the cylinder or, equivalently, as the ratio of 
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8 

FIGURE 7. Stress force for a cylinder (L/D = 1-0) with N points equally spaced along 
perimeter. A, N = 16; x ,  N = 24; 0, N = 32; 0, N = 40; 0,  N = 80; -, numerical 
solution with N = 80 but collocation points concentrated near 9 = 1. 

the drag on a sphere with the same volume as the cylinder to that on the cylinder 
when both are exposed to the same uniform external flow. Thus 

where r, = (&LD2)& is the radius of the sphere and L and D are the length and 
diameter of the cylinder. As might be expectedh view of the discontinuities 
in ni a t  the corner, f is, as shown in figure 7, a sensitive function of position near 
the corner. As a result, a policy of spacing the x ( ~ )  at equal intervals along the 
perimeter is rather inefficient, and experiments show that increased accuracy 
can be achieved by concentrating the points near the corner. Table 1 gives K for 
additional aspect ratios and shows good agreement of the results with those of 
Gluckman et al. Also compared in table 1 are the present results and those 
obtained by Batchelor (1970)) 

K = 67rrs W,/Fl(cylinder), (4.1) 

using slender-body theory. In all cases, the difference between K and K is of 
the same order as the error in (4.2). 

Three-dimensional flows 
The three-dimensional problem is, of course, much more formidable compu- 
tationally since a two-dimensional integral equation must be solved. A priori 
it might be expected that, if N points are required for a certain accuracy in the 
axisymmetric case, approximately N 2  points would be required to achieve 
comparable accuracy in the three-dimensional case. Since 20 might be considered 
a typical value of N for axisymmetric flows, this would indicate that an N of 
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Aspect Number of Numerical 
ratio surface h a g  Gluckman et al. t 
LID elements, N K K G P , , )  K’ 
0.5 8 0.879 0-877 - 

16 0.875 
24 0.873 
32 0-873 

1.0 8 0.962 0.960 
16 0-956 
24 0.955 
32 0.954 
40 0.954 

2.0 8 0.986 O * Y W  
16 0.980 
24 0.978 
32 0.977 
40 0.977 

16 0.934 
24 0.932 
32 0.932 

10.0 8 0.794 0-932 (1) 0.781 
16 0.789 0.876 (2) 
24 0.788 0.855 (3) 
32 0.788 0.837 (5) 

20.0 8 0-659 0.695 (3) 0-658 
16 0.650 0.683 (5) 
24 0.649 0-674 (9) 
32 0.649 0.668 (15) 

40.0 8 0-528 0.539 (3) 0.518 
16 0.513 0.531 (5) 
24 0.510 0.525 (9) 
32 0.510 0.522 (15) 

60-0 8 0.455 0.441 
16 0.438 
24 0.436 
32 0.435 
40 0.435 

16 0.390 
24 0.387 
32 0.387 

16 0.354 
24 0.352 
32 0.351 
40 0.351 

4.0 8 0.938 0.929 - 

80.0 8 0.404 0.391 

100.0 8 0.365 0.354 

t For 10 < LID < 40, No$ is the number of touching prolate spheroidal singularities 
used by Gluckman et al. to approximate the cylinder. 

TABLE 1. Drag results for finite cylinders. The collocation points x(~) were distributed 
non-uniformly with I x ( ~ - ~ )  - xCm)l w I x ( ~ )  - X ( ~ + ~ ) I  but such that the distance between the 
collocation points at the centre of the cylinder was approximately 10 times the distance 
between the collocation points near the corners. 
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FIGURE 8. Simple shear flow past a prolate spheroid divided into 
144 elements with rz = 6 ,  = 3. 

400 might be typical in three dimensions. This would lead to 1200 algebraic 
equations, which in general would have to be solved directly. This, computa- 
tionally, would be such a formidable task that smaller values of N would have 
to be used, leading to an expected attendant decrease in accuracy. However, 
as will be seen, the loss of accuracy is in many cases relatively slight and not nearly 
as large as might first be expected. 

Because the use of an adaptive quadrature scheme is inherently inefficient 
and since the calculation of the double integrals in (3.1) constitutes a significant 
portion of the total computer time for most three-dimensional problems, a 
simple product Gaussian rule, rather than an adaptive rule as was used in the 
axisymmetric case, was employed to calculate the coefficients in the algebraic 
system. Thus, the results in any three-dimensional problem depend on the 
particular integration rule that is being used as well as on the number of ele- 
ments into which the body is divided and on the geometry of these elements. 
In addition, because of the extra dimension, the dependence-on the manner of 
forming the N elements is more complex in three dimensions that in two. 
Specifically, unlike the axisymmetric case, no simple policy for forming the A, 
could be found that rendered the solution a unique function of N .  For example, 
if a simple body such as a sphere in a simple shear is divided into N elements, 
then merely rotating the lines dividing the A, by a fixed amount will, in general, 
yield slightly different results. 

Numerical experiments were conducted on a prolate spheroid 

x; + (xi + xi)/az = 1 

with q(x) = Silxz, which corresponds to a stationary prolate spheroid placed 
symmetrically in a simple shear flow parallel to its major axis. As shown in 
figure 8, the spheroid was divided into N = 87270 elements by first using the 
planes x1 = 0,  x2 = 0 and xg = 0 to form eight symmetric regions, each of which 
was subsequently divided to form the elements A, by spacing the x(,) a t  7% 
equal intervals in the 1 direction and at 7s equal intervals with respect to the 
azimuthal angle 8. 
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The two-dimensional integration formula which is most appropriate for a 
given problem depends on the shape of the Am. For elements which are approxi- 
mately square in terms of the x, ,6  cylindrical co-ordinates used, symmetric 
product rules would appear to be most appropriate. In  the present numerical 
experiments, symmetric product Gaussian rules constructed from either four- 
or eight-point one-dimensional formulae, thus using 16 and 64 points respectively, 
were employed for spheroids with 0.2 < a < 1.0, while for the moreelongated 
elements associated with spheroids with axis ratios between 0.02 and 0.10, 
either 3 x 8 or 4 x 16 product Gaussian formulae were used. In  all the experi- 
ments, the high-order formula in any pair was employed on the element con- 
taining the singularity and the low-order formula for the remaining integrals. 

Table 2 summarizes the results for the three-dimensional experiments and 
shows that the couple T3 normally had an error of approximately 1 % or less. 
The analytic total force 1pi* on the particle is, of course, identically zero and, 
indeed, the numerical total force Z$ was found to be zero to machine accuracy. 
Also the largest relative errors in If 1 andf, were normally less than 5 yo with an 
average relative error of about 1 %. However, since fi is typically one or two 
orders of magnitude smaller than fi, while its absolute error is normally com- 
parable with or less than the absolute error in f,, its relative error was naturally 
somewhat larger. But, as may be seen by comparing the errors in If/ and f,, 
the errors in t i  have a very slight effect on errors in thejocal stress force f .  

Table 3 summarizes two experiments which demonstrate the relative insen- 
sitivity of the results to the manner in which the elements Am were formed and 
to the particular integration formula used. In  the first experiment, which was 
intended to consider the effect of element shape, the surface elements of a sphere 
were constructed in two different ways: vx = 2 ~ , J 9 ~  = 1,2 ,3)  and vx = ve 
(9, = 2,3,4).  As can be seen, the results are nearly identical. The second experi- 
ment used the same elements on a spheroid with a = 0.1 but employed one of 
two different integration formulae: either a 3 x 8 or a 4 x 4 product Gaussian 
rule. Again the results are very similar, with, as might be expected, the 3 x 8 
formula being slightly superior. However, for more elongated spheroids the 3 x 8 
formula is definitely more accurate and in the case a = 0.05 gives errors which 
are roughly half as large as those resulting from use of the 4 x 4 formula. It was 
also found that, for 0.1 < a 6 1.0, the results were insensitive to the element 
shape for elements whose length-to-height ratio was between 0.1 and 10.0, 
and that, for these element shapes, it made little difference whether the 4 x 4 
or the 3 x 8 integration formula was employed. 

A three-dimensional problem of practical significance, owing to its occurrence 
in nature, and its suitability for experimental investigation, is that of deter- 
mining the angular velocity of a finite circular cylinder freely suspended in a 
general linear shear flow. As has been demonstrated experimentally (Goldsmith 
87, Mason 1967) and theoretically (Brenner 1964b), the expression for the angular 
velocity contains a single unknown scalar, the equivalent axis ratio re, defined 
as the axis ratio of that spheroid which would, when freely suspended in the 
same flow field a t  infinity, experience the same periodic motion as the cylinder. 
Unfortunately, if the cylinder has length L and diameter D, the determination 
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L 
D 

1.00 

- 

1.67 

2.50 

10.0 

16.7 

25.0 

50.0 

100.0 

166.7 

N 
144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

144 
112 
80 
40 

re - 
LID 
1.16 
1.15 
1.13 
1.12 
1.02 
1.02 
1.01 
1.02 
0.939 
0.938 
0.938 
0.928 
0.749 
0.748 
0.745 
0.726 
0.702 
0.700 
0.694 
0.673 
0.657 
0.657 
0.655 
0.661 
0.612 
0.611 
0.605 
0.621 
0.574 
0-573 
0.575 
0.564 
0.555 
0.560 
0-570 
0-568 

T!JL3 
26.6 
26.4 
25.9 
25-0 
16.3 
16.2 
15.9 
15.9 
11.6 
11-5 
11.3 
11-3 
4.74 
4.72 
4.70 
4.66 
3.73 
3-71 
3.67 
3.65 
3.19 
3.18 
3.17 
3.11 
2-52 
2.51 
2.50 
2.48 
2.07 
2.07 
2.08 
2.16 
1-84 
1.86 
1.88 
1.88 

T D I L ~  

00 

31.7 

13-9 

4.39 

3.48 

2.99 

2.40 

2.01 

1.79 

T ; I L ~  
19.8 
20.1 
20.2 
20.0 
5.60 
5.61 
5-57 
5.53 
2-09 
2.09 
2.06 
2.11 
8.4 x 10-2 
8.4 
8.5 
8.9 
2.7 x 
2.7 
2.7 
2.9 
1.2 x 10-2 
1.2 
1.2 - 
1.1 

2.7 
2.7 
2.6 

6.3 
6.3 
6.8 

2.1 
2.1 
2.1 

2.7 x 10-3 

6.3 8 10-4 

2.1 x 10-4 

8Tznd - 
1d2 

8.3 

5-1 

3.8 

2.8 

2.7 

2.8 

2.7 

2.8 

2.9 

4T;de In LID 
r1d2 

0 

0.85 

1.4 

2.1 

2.2 

2.3 

2.5 

2% 

2.5 

TABLE 4. Equivalent axis ratios of circular cylinders 

of re is analytically intractable for LID = O(1); furthermore, as discussed by 
Cox (1971), the problem cannot be solved completely using slender-body theory 
when LID 9 1, owing to the presence of the blunt ends of the cylinder. Cox 
(1971) has shown, however, that re is given by 

where TA and Tl are, respectively, the torques experienced by a stationary 
cylinder centred a t  the origin with axis in the 1 direction when exposed to 
simple shear flows a t  infinity given by 

u; = -6,,x,, u,“ = 13iilxg. (4.4a, b)  
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The problem (2.1) with (4.4) was solved numerically using the same integration 
methods and the same procedure for constructing the surface elements as in the 
previous example. The results are shown in figure 9, where they are compared 
with the available experimental data. Clearly, the agreement with experiment 
is very good for LID < 100, but for LID > 100, re does not fall as rapidly with 
increasing LID as the recent experimental data of Harris & Pittman (1975). 

The numerical solution definitely becomes more difficult a t  very large LID, 
for at least two reasons. First, as seen in all the previous solutions, numerical 
errors increase as the elements Am become more elongated. Second, the evaluation 
of T i  is subject to more errors because the contribution to Ti from the forces 
acting near the corners of the cylinder becomes relatively more important as 
LID increases, and the calculation of these forces is, for all aspect ratios, the 
most difficult, and hence the most error prone part of the computations. Never- 
theless, the numerical results appear reliable because of their excellent agree- 
ment with the experimental data of Anczurowski & Mason (1968) and the fact 
that, as will be seen below, they are entirely consistent with the slender-body 
analysis of Cox. It is felt, therefore, that the findings of Harris & Pittman, 
especially a t  larger values of LID, should be looked at anew. 

Table 4 summarizes the numerical results and compares TA with the value 
given by slender-body theory (Cox 1971): 

In  all cases, Ti and TI, agree to O[(ln 
order as 

In fact, if TE is written to higher 

+ ~ ( l n g ) - ~ ] ,  (4.6) 
0.447 0.10 ‘ 

’ “f [&D + (In L/D)2 + (In L/D)3 T,  = - 

agreement to three significant figures is obtained for LID 2 25. 
The slender-body analysis of Cox (1971) cannot determine T: quantitatively 

for blunt bodies since it is unable to handle properly the ends of the cylinder, 
which make a major contribution to the torque. Cox observes that, for large 
LID, TG is equal to the torque TGnd due to forces acting on the ends, i.e. 

T: M T:nd = +a,LD2, (4.7) 

where a, is a constant, whose value Cox estimated to be 5-45 by using (4.3), 
(4.5) and (4.7) and fitting the experimental data of Anczurowski & Mason 
(1968). On a strictly empirical basis, Harris & Pittman (1975) later proposed that 

and determined the constants aH = 9.0 and KH = - 1.21 from their experi- 
mental data and those of Anczurowski & Mason. 

However, if T: is decomposed into 

Ti = T& + Tiide, (4.9) 
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LID 
FIGURE 9. Equivalent axis ratio of circular cylinders. A, Anczurowski & Mason (1968); 
0, Harris & Pittman (1975); -0-, numerical results; ---, equation (4.12). 

where Tiiae is the contribution to the torque of the forces acting on the sides of 
cylinder, Cox’s analysis indicates that 

(4.10) 

where the constants Tc, and k2 can be independenfly determined from the 
numerical results. As seen in table 4, kl and k, are 2.8 and 2.6 respectively with 
an error estimated to be less than 4 yo. Therefore 

(4.11) 

which is of the same form as the expression proposed empirically by Harris & 
Pittman. However, since (4.8) should be viewed as the sum of T&d and Tiide, 
cl, and K H  are necessarily positive, in contrast to Harris & Pittman’s empirical 
result K H  = -1.21. On the other hand, the large discrepancy between the 
values kl = 2-8 and ac = 5.45 proposed by Cox is due to the fact that at the 
largest aspect ratio studied by Anczurowski & Mason ( z  loo), TLa and T:ide 
are, according to  the present calculations, still of the same order of magnitude, 
and thus the assumption T: NN Tind is invalid. 

By combining (4.3), (4.5) and (4.11) we therefore obtain, finally, 

(4.12) 

for large LID. As expected, and as shown in figure 9, equation (4.12) fits the 
numerical results smoothly and does not fall off as rapidly as the data of Harris 
& Pittman. 
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All computations were performed on Stanford's IBM 360167, and by taking 
advantage of the symmetry in the three-dimensional problems, no single experi- 
ment required more than one minute of computer time. In  fact, a typical axisym- 
metric calculation with 30 points or a three-dimensional experiment with 60 
points required approximately 15-20 s. 

This work was supported in part by the National Science Foundation under 
grants GK 41781 and GK 36515X and by an N.S.F. fellowship to G.K.Y. The 
authors are grateful to Howard Brenner for his helpful suggestions. 

Appendix A. Proof that (2.9) has a unique solution 
Since, as shown by Odqvist, (2.1) and (2.2) have a solution v,  it follows that 

fi = q j ( v ) n ,  is a solution of (2.9). To show that this solution is unique it is 
sufficient to show that the homogeneous equation 

has only the trivial solution. Consider the velocity field wi formed from a solu- 
tion q5i of (A l), 

and its associated stress field 

which has a jump at S, given by 

Now wi(x)+O as x+oO and wi(x) = 0 on 8, by (A 1) since the single-layer 
potential is continuous a t  S,. Therefore, since wi, together with its associated 
pressure, which is equal to a single-layer potential with density q5i, satisfies 
(2.1) and is zero on AS', and at infinity, the uniqueness proof of Odqvist for the 
Stokes problem implies that wi(x) and hence T,,(w) must be identically zero 
everywhere. Thus q5i is also identically zero by (A 4). 

Appendix B 
We give values of A$T)(x(m),e) and Vi2)(~(m),e) representing those parts of 

A$T)(x(m)) and V(,z)(x(m)) which result from integration over the planar square 
S, centred a t  x(m) with sides of length 2e and along lines of constant x1 and 
constant 8. To begin with, from (3. l), 
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Next, if the actual surface of the particle is given by R(x,, 8), it can be shown that 

r ly cos w 
x1-y1= (1  +Rf2)3’ 

rsyn3 sin w r,,n2 R’ cos w 
X2-Y2 = (n; + ng)* - (ni + ng)s (1 + R‘2)& ’ 

where 8 = tan-lx,/x,, R‘ = aR/ax,, all quantities are evaluated at x ( ~ ) ,  and w is 
the angle between rx, and the projection of the negative 1 axis onto S,. When 
substituted into (B l ) ,  these expressions yield 

I 
= 0.28056 [ 2+- I+Rf2]’ 

- 0.2805n2 R’E - 0-2805n3 R’E 
[ 1 + R‘ 2] (ng + n;)* ’ (m) - AiT) = 

- [I  + Rf2]  (ni + n$’ 

1 nf + Rf2 (n; +n;) A!jT) = 0.2805s 2 +  [ (ng+ng){l+R‘2} ’ 

- 0.2805en2n, 
(n; +nf )  [1+ Rf2] ’ 

A!jT) = 

ni + Rf2 (ni + nf) Ah?’ = 0.2805~ 2 +  [ 
To calculate V p ) ( ~ ( ~ ) , e ) ,  use (2.10) to obtain 

V?’(X) 

Clearly Vi?)(x) is easily calculated numerically if the integral over S, can be 
evaluated. But 

26 F L M  69 
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and could be neglected to a first approximation. However if q(x) = C&xj, then 
the integration in (B 11) can be performed analytically, yielding 

G1(X(m),c) = -A1~[O*6166B1+0~2251B3], (B 12) 

G ~ ( x ( ~ ) ,  C) = -~[{0*6166B,  + 0.2251B3}A2+ 0*2251B2A3], ( B  13) 

G ~ ( x ( ~ ) ,  e )  = -6[{0*6166B1 + 0*2251B3}A4+ 0-2251B2A5], ( B  14) 
where 

with all quantities again evaluated a t  x ( ~ ) .  
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