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The problem of determining the slow viscous flow of an unbounded fluid past a
single solid particle is formulated exactly as a system of linear integral equations
of the first kind for a distribution of Stokeslets over the particle surface. The
unknown density of Stokeslets is identical with the surface-stress force and can
be obtained numerically by reducing the integral equations to a system of linear
algebraic equations. This appears to be an efficient way of determining solutions
for several external flows past a particle, since it requires that the matrix of the
algebraic system be inverted only once for a given particle.

The technique was tested successfully against.the analytic solutions for
spheroids in uniform and simple shear flows, and was then applied to two prob-
lems involving the motion of finite circular cylinders: (i) a cylinder translating
parallel to its axis, for which the local stress force distribution and the drag were
determined; and (ii) the equivalent axis ratio of a freely suspended cylinder,
which was calculated by determining the couple on a stationary cylinder placed
symmetrically in two different simple shear flows. The numerical results were
found to be consistent with the asymptotic analysis of Cox (1970, 1971) and in
excellent agreement with the experiments of Anczurowski & Mason (1968),
but not with those of Harris & Pittman (1975).

1. Introduction

Although the classical Stokes-flow problem of the motion of an inertialess un-
bounded fluid past a single body has been studied for more than 100 years,
analytical solutions have been obtained only for special geometries. For example,
Stokes (1851) solved the problem of a translating sphere, Oberbeck (1876)
extended this result to an ellipsoid translating parallel to its axis, while Jeffery
(1922) obtaiiled the solution for an ellipsoid immersed in a general linear flow
field. More recently, solutions have been derived for bodies which correspond to
a co-ordinate surface of one of the special orthogonal co-ordinate systems in
which the Stokes equations are simply separable (see Payne & Pell 1960; Nir &
Acrivos 1973). Additionally, Stokes-flow theory has been extensively developed
for flow past long slender bodies (Batchelor 1970; Cox 1970, 1971) and for flow
past slightly deformed spheres (Taylor & Acrivos 1964; Brenner 1964a).

No analytic solutions are at present available, however, for general body
shapes and, indeed, none has been found for the apparently simple geometry of
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a cylinder translating parallel to its axis. Thus, to describe Stokes flow past
general bodies, it is usually necessary to resort to a numerical approach.

Of course, it should in principle be possible to use a conventional finite-
difference scheme, but unfortunately the integration domain would have to be
made very large relative to the particle size since the absence of any inertial
effects results in slow algebraic decay in all directions of any disturbance pro-
duced by the body. Gluckman, Weinbaum & Pfeffer (1972) presented two
striking illustrations of this effect and concluded that it would normally be
impractical to employ finite-difference methods for infinite-domain Stokes
problems.

Fortunately, the linearity of the Stokes equations suggests an approach
based on superposition to take advantage of this linearity, and indeed, consider-
able work has been done using different schemes based on the method of weighted
residuals. Thus, for axisymmetric flow past nearly spherical particles, O’Brien
(1968) expanded the stream function as a truncated power series in Sampson’s
(1891) separable solutions written in spherical co-ordinates and, using a boundary
collocation method (Finlayson 1972, p. 11), satisfied the no-slip boundary
condition at selected collocation points. Similarly, for flow past a three-dimen-
sional, nearly spherical particle, Rosen (1972) expressed the velocity field in
terms of Lamb’s (1932, p. 595) general solution, truncated the series and mini-
mized the mean-square error in satisfying the no-slip condition. However, the
range of validity of weighted residual methods is limited, as was illustrated by
Gluckman ef al. (1972), who attempted to extend O’Brien’s approach to more
elongated spheroids and found that, for a prolate spheroid with an axis ratio of
2-0, the numerically calculated drag oscillated unstably as the number of collo-
cation points was increased. This difficulty was resolved by Bowen & Masliyah
(1973), who expressed the stream function in terms of Sampson’s separable
solutions written in spheroidal co-ordinates and performed a least-squares fit to
satisfy approximately the no-slip condition. With this technique, numerically
calculated values of the drag for extended spheroids compared very well with
the exact analytical results. Nevertheless, it is not clear how well this method
would succeed with particles which are not approximately spheroidal.

Using a slightly different approach, Gluckman et al. (1972) observed that any
convex body of revolution may be approximated by a finite number of touching
oblate spheroids with very large aspect ratios. Since the solution for axisym-
metric flow past an individual oblate spheroid is given by an infinite series of
Legendre polynomials (Sampson 1891), by superposition, the flow past the
assembly of spheroids can be expressed as a double sum. By truncating the
infinite series and employing a boundary collocation scheme, Gluckman et al.
obtained an approximate solution for which the computed drag agreed very
well with the analytical results for spheroids. Drag results for cylinders and
cones were also presented.

Thus, a number of numerical schemes have been proposed for axisymmetric
flows past axisymmetric bodies which are either convex or approximately
spheroidal, or for three-dimensional flows past nearly spherical bodies, but none
of these methods is general in the sense that it can handle each of these three
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FicUre 1. Stokes flow past an arbitrary particle.

problems or, which is of even more significance, the general three-dimensional
case.

The work of Hunt (1968) and Smith & Hess (1966) on potential flow, Cruse
(1969) in elastostatics and Chang, Kang & Chen (1973) on heat conduction
suggests, however, that an integral-equation approach to the Stokes problem
might be appropriate. In this method, the fundamental singular solutions of
the governing differential equations are continuously distributed over the
boundaries of the problem, and the boundary conditions then lead to integral
equations for the densities of the fundamental solutions. Thus, the solution of a
differential equation in » dimensions is reduced to.the solution of an integral
equation in n—1 dimensions. In addition to reducing the dimensions of the
problem, this method is attractive for Stokes problems since it is a very general
approach independent of the body geometry and the form of the external flow
field. To be sure, analytical solution of the integral equatiéns is, in general, not
possible, but these can be solved numerically. The philosophy and advantages
of recasting the solution in integral form were discussed in detail by Gluckman
et al. (1972), who described such an approach (though they did not use the fun-
damental singular solution) for axisymmetric flow past convex bodies although,
in the end, they only made use of the aforementioned collocation procedure for
their numerical experiments.

2. Formulation of problem

The problem of creeping flow in a domain Q past an arbitrary particle P with
surface S, (figure 1) is described by

Pox) _op(x)  v(x)
ox;0x;  ox; B oy

=0, xel, (2.1)

v(x) = —Uy(x), X€eS,,
v(X), p(X)>0 as |x|—>oo0, (2.2)
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where all the variables are dimensionless and the usual Cartesian tensor sum-
mation convention is adopted. The reduction of the solution of (2.1) and (2.2)
to the solution of a system of integral equations is well known and, as described
by Ladyzhenskaya (1963, p. 49), forms the basis of Odqvist’s (1930) proof of
the existence and uniqueness of a solution to (2.1) and (2.2).

The fundamental singular solution of (2.1) is

—1 ﬁu + (s —y4) (2, — ?/i)]
8w ey 3, ’
pj(xi Y) = (yg - xj)/4ﬂrgyy
where 7., = [x—y|. It is clear that, as a function of x, (2.3) solves (2.1)forx + y
and has the appropriate singular behaviour at x =y. Physically, u;(X,y)
represents the sth velocity component at x due to a unit force (commonly
referred to as a Stokeslet) in the j direction applied at y, while p, represents the

associated pressure at X.
Next, by defining the shear-stress tensor {7};},

T;(V) = — 8,0 + 0v,[0x; + Ov,[0x,, (2.4)

and using the divergence theorem, one can easily obtain what might be called
Green’s formula for the Stokes problem for smooth solenoidal vectors u and v
and smooth scalars p and ¢ in the bounded domain ¥ with boundary oK:

I o0 s 2l - “'<X>[%%‘§i'i]}d"
= ([, 0 T a0 — ) Ty m S, (25)

where Tj,[u(x)] = —&,;;q+ du;/ox;+ du;[ox; and where dS, indicates that the
integration over JF is with respect to the point x. Then, by replacing (u;,q)
with the fundamental solutions (u;;, p;), identifying v; and p with the solution to
(2.1) and using the facts that v,(x) = O(|x|1) and p(x) = O(|x|~?).as |x|—>o0,
Green’s representation formula (or Green'’s third identity) for the Stokes prob-

U5(X,y) = (2.3)

lem follows readily: (x) = T 2)
| vi(x) = V() + V <X>’} cQ, (2:6)
P(x) = PO(X) + PO(x),

where

yi(x f f VT, (v (y)]ny(y) S,
= —ff ug (X, 9)fu(¥)dS,, xeq, (2.7a)

V(Z) ffs _yj):f:k_yk) V() nj(Y)dSy, xeQ, (2.7b)
PO(x H 2%, Y) Ty [V(y) 1 ny(y) dS

=-[[ e ifuas, xeo, (2.7¢)
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P(Z)( ff [31:, 3(xk—yk5) (x,_'yj)] ’Uk(Y) n,(y) dSy, XGQ, (2.7d)
..471' Sp 7. Ty
J(¥) = T [v(y)1ny(y)- (2.7¢)
(VP, POy and (V®, P®) are termed single and double-layer potentials, with
densities f; and v, respectively by analogy with the corresponding potentials
from potential theory. f; is the local surface-stress force and n; is the inward
normal to the particle.

The combinations (V{P(x), PM(x)) and (VP(x), P@(x)) individually satisfy
(2.1) for xe Q and thus (2.6) is a solution of (2.1). Furthermore, since V¥(x),
VP (x), PY(x) and P®(x) all tend to zero at infinity, it only remains to satisfy
the no-slip condition. Odqvist showed that if one attempts to express v;(x)
solely in terms of double-layer potentials (with densities not, in general, equal
to v;), the integral equation of the second kind that results on applying the no-
slip condition has six eigensolutions. Thus, in general, »,(X) cannot be repre-
sented in terms of double-layer potentials alone, but rather must be written in
terms of the six single-layer potentials, with the eigensolutions of the adjoint
integral equation as densities, plus the double-layer potentials. However, since
the eigensolutions of the adjoint equation are in general unknown, this approach
is not convenient for computational purposes. Although such a difficulty does
not result if »,(X) is written using only single-layer potentials with density
(or, stated in more familiar terms, as a distribution of Stokeslets over the particle
surface), the essentially equivalent approach of deriving the appropriate integral
equations starting with (2.6), thus retaining the double-layer potential terms,
will be employed here since this identifies the unknown densities in the resulting
integral equations with the local stress force f,.

The single-layer potentials V{(x) are continuous in the entire space if the
densities f, are continuous, which will be true if 8, is, as will be assumed, a
Lyapunov surface (Giinter 1967, p. 7; for surfaces of practical interest this
requires the surface to have a well-defined tangent plane.at all points). How-
ever, the double-layer potentials V{?(x) are not continuous at S, but suffer a
jump given by (Odqgvist 1930)

lim VP (x) = VP(X,) + 4v,(X,), X€Q, X,€8,. (2.8)

X,

Using these facts, the no-slip condition leads then to the following linear integral
equations of the first kind for the densities f;:

U(x) = _§_J' (@i —y) (- y) (fk'—yk)nj(Y) Uk(Y)dS

ot 2m 3 v

J'J'SP[ i y,l (x— yk)]fk(y) ds,, xeS,. (2.9)

It is not difficult to see that the integrals in these equations, though improper
for x =y, do exist if §, is a Lyyapunov surface. Since, as shown in appendix A,
equations (2.9) have a unique solution for all U;(x), it follows that the solution
of (2.1) and (2.2) has been reduced to the solution of (2.9).

Thus when the Stokes problem is formulated in this manner, the stress force
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distribution, which is normally the quantity of interest in such calculations, is
determined directly. This is in contrast to other methods, which yield directly
the coefficients in a (truncated) infinite series for the velocity or stream function,
coefficients which normally are of only limited quantitative importance. Further-
more, as shown in §4, the present method yields accurate local stress forces f;,
whereas the success of other schemes has only been demonstrated to date in
terms of computed integral properties such as the drag.

Equations (2.9) simplify for the cases of uniform flow at infinity and axisym-
metric flow. Specifically, if U,(x) is a constant W, then it can be shown using
(2.5) that

%f (@ —Ys) (xj~yj25(xk_yk)nj(3’) W;"dSy =W, xe8, (2.10)
zy
and hence (2.9) reduces to
W, = f f [ (e =) (@ — Yi) )] fuv)ds, xeS, (211
Sp r-’EU

It is of interest to pomt out that, had the velocity field been expressed solely in
terms of single-layer potentials, (2.11) would have followed immediately since,
as noted above, the single-layer potentials are continuous across S,. However,
the above arguments serve to show that the densities of the potential layers in
(2.11) are equal to the surface-stress force.

For uniform flow at infinity in direction 1 parallel to the axis of an axisym-
metric body, (2.11) reduces to a one-dimensional integral equation. Specifically
if the uniform flow has speed W,, if £, is the radial component of f in a cylindrical
co-ordinate system with axis in the 1 direction and if the particle surface in
terms of cylindrical co-ordinates is given by

= R(y,)cosf, y;= R(y,) sinﬁ (2.12)

where —1 <y, <1 R( + 1) = 0 and R(y,) is single valued, then the integration
in the azimuthal direction can be performed analytically. Thus, setting

L= [ 4R(x,) R(y,) ]7}
() —91)2 4+ {B(xy) + R(yy)}?

(2.13)

we obtain from (2.11)

—_ 1
W= [ kR-He) R A {1+ REHE + (0~ Efrdy oy
-1

1
+'a%r f . kR~¥(2y) B=¥(yy) f(y1) (@1 —y1) {1+ B2}

x{F + [R*x,) — R¥(y,) + (x; —y1)%] E/T?cy}d?/p -1<2 <1, (2.14a)
and

‘"
- ?417]4 kR4 (x,) R*(yl}fl(yl) (@, —y) {1 + R}
X {F + [R*x;) — R¥(y,) — (¥, — y1)%1 E[r2,} dy, +Z17_TfkR_%(xl) R4y

x [y {1+ B[ B3 (x,) + B3 (y,) + 22y — y1)? 1 F — [2(2, — 1)*
+ 3(x; —41)? (R¥(=,) + B%(yy)) + (B*(x;) — R2(y,))?] E/ngy} dy.,
—-1 <2 <1, (2.14D)
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where R’ = dR/dy,, and F and E are, respectively, the complete elliptic integrals
of the first and second kind with modulus &.

3. Numerical solution

Equations (2.9) and (2.14) can be solved numerically using the Krylov—
Bogoliubov method (Kantorovich & Krylov 1958, p. 130), which transforms the
integral equations into a linear system of algebraic equations. This is accom-
plished by dividing S, into N elements A,,(m = 1,2,...,N) all of which are
small relative to S, and over which the components of f may, for the purposes
of the integral equations, be considered constant and equal to their value at
the centre of the element. The integral equations are satisfied at the centres
xM(m = 1,2,...,N) of each element, thereby yielding the numerical approxi-
mations to (2.9):

U, (xm) — f f (@™ — ) (@ — ) (B —ya) my(y) UlY) 5
Sp r3m), v
, (m) _ (m) __ )
— x ik +(xz —Y; )( Yie ] ds ,
i 20 | f N [Wy £ ,
N 3 - -
or g,(xm™) = 3 ADf . (xP) (m'=1,2,...,N), (3.1)
i=1
where
(my __ o (m) __ (m) __ i
gl,(x(m)) = e I]i(x(m)) __3_ff (x’b yz) (xj ng (xk yk) n](y) Uk(y) dSy
SP T ("")y
""’—y ) (2" —y)
and A = ff [ k ] ds,.
4, z(m)y rx(m)y

The above form a linear system of 3N equations in the 3N unknowns f,(x™).
Similarly, the axisymmetric case is approximated by a 2V x 2N system which is
easily obtained from (2.14). In either case the algebraic system can be solved
numerically using suitable integration and matrix inversion techniques.

Even though, in deriving (2.9), it was necessary to assume that S, was a
Lyapunov surface, no such restriction on S, is required to obtain (3.1), the
discrete approximation. Indeed, each equation in (3.1) could have been obtained
individually by taking the limit of (2.6) as x (in Q) approached each x™ under
-the milder restriction that S, be smooth in the sense of Lyapunov at each xt™.
This local Lyapunov condition also ensures that all the integrals in (3.1) exist.
Therefore (3.1) applies to any particle which satisfies the Lyapunov conditions
at each x™.

Since the density f; is the local surface-stress force, the total force F; and the
couple 7} acting on the particle are, respectively,

N N
F = 3 fix9) f 48, T,= 3 fu(x9) f f 40135, (3.2)
=1 A =1 A
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while the velocity and pressure fields are given by, respectively,

N N
(X)) = — Elfk(x(z))ff&uik(x, y) dSU
3 (= ¥s) (@5 —y;) (X = Yg) Ul¥) n5(Y)
o f f . a8

e Y

xeQ.  (3.3)
N ¥

p) == 3 5ux) [ putxyas,
i=1 4

Ty

The most critical feature of the numerical solution is the accurate calculation
of the various surface integrals over the elements A, since it is these integrals
which are the coefficients of the f,(x™) in the algebraic system. These integrals
are sensitive functions of position for small 7 m, and are improper at y = x™,

For a general three-dimensional particle, the co-ordinate system is first trans-
formed to allow a simplification in the expression for the surface integrals. A
cylindrical co-ordinate system with azimuthal angle ¢ will be assumed for the
purposes of this discussion. The direction of the axis is completely arbitrary
and will be referred to as the 1 direction. The surface is next divided into N
elements A,, whose boundaries are lines of constant z; and constant 6. In this
way the surface elements become rectangular in x,;, ¢ co-ordinates, which is
advantageous for two reasons. First, it simplifies the numerical calculation of
the surface integrals since simple product integration schemes, based on any
one-dimensional rule, are easily constructed for rectangular elements, and
second, it is not necessary to give a precise definition of X%, the centre of A,
since all reasonable definitions yield the geometric centre of the rectangle, a
feature which does not necessarily hold for elements of arbitrary geometry.
The numerical calculation of the surface integrals then presents no problems
except when j = m, in which case the integrals are improper since the integration
is carried out over the element which contains x™. In this case, the integration
is divided into two regions: integration over a small neighbourhood of x,
whose exact dimensions are described below, and integration over the remainder
of A,,. To perform the crucial integration over the neighbourhood of x®, the
surface is assumed to be locally flat, i.e. it is approximated by the tangent plane
at x, Then, by transforming to a local polar co-ordinate system lying in this
tangent plane with origin at x®, it is possible to integrate the various integrands
in (3.1) analytically over this small neighbourhood, thereby obtaining the
results summarized in appendix B. The neighbourhood is chosen such that, in
terms of the local polar co-ordinate system, it is a square of side 2¢. For the
numerical experiments, the results were insensitive to € for ¢ between 0-01 and
0-20 times the smaller of the two sides of the rectangle A,,.

For axisymmetric flow (with the 1 direction taken as the axis of symmetry)
past a body which is strictly convex, (2.14) may be used directly since the condi-
tions required for its validity are satisfied. On the other hand, if, as in the case
of a finite cylinder with axis in the 1 direction, R(y,) is not single valued, the
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surface integral in (2.11) is first split into domains of constant y, and domains
where R(y,) is single valued; the integration in the azimuthal direction is then
performed analytically, and the surface integrals are thereby reduced to line
integrals over y, and y,. In either case, after dividing the resulting integral(s) to
form the elements A, the integrals over A,, are calculated using an adaptive
quadrature scheme (a scheme which systematically divides the integration
interval into successively smaller subintervals until successive approximations
to the integral differ by less than a specified allowable error) based on Simpson’s
rule with a Richardson extrapolation. The maximum allowable relative error is
normally chosen as 10-% or 10~5. In the case of (2.14) it can be shown that the
term in the first integrand involving F(k) in the equation for W, and the term
in the second integrand involving F(k) in the homogeneous equation both be-
come logarithmically infinite as y — X®™. These terms were handled by expanding
F(k) for k— 1 and then performing an analytical integration over a small neigh-
bourhood of x™ defined typically by r.m), less than or equal to 10—* times
the characteristic dimension of A,. The remaining integrands all have finite
limits as y— x™ and thus their evaluation presents no difficulties.

The linear algebraic system, which is normally completely dense, was solved
using standard Gaussian elimination followed by iterative improvement. The
fact that (2.9) has a unique solution suggests, though it does not guarantee,
that its discrete approximation, the algebraic system, should also have a unique
solution. In fact, for all bodies investigated, the system did have a unique
solution. In general, because of the singularity in the corresponding integrand,
the diagonal terms are the largest in any row (or column) though not sufficiently
large to make the matrix diagonally dominant. Since for large values of N a
considerable part, or even the major part, of the comyputer time is spent inverting
(or effectively inverting) the matrix {4%)}, it is worthwhile to note that since
the matrix is a function of only the body geometry and not of the velocity field
at infinity {which affects only g,(x%) in (3.1)], it is only necessary to invert it
once for all external flows past a given body. In fact, once {4}~ is known for
a certain body, it is a simple matter to obtain the six solutions corresponding to
pure translation along and pure rotation about each of the axes of the body and
then employ the method of Brenner (1966) to calculate the complete translational
and rotational symbolic resistances of the body and thus the net force and torque
on the body in an arbitrary Stokes flow.

An inherent difficulty in the numerical solution of integral equations of the
first kind is that the problem is well known to be ill conditioned, in the sense
that small errors in either g;(x®™) or AY) can often produce relatively large errors
in f;. However, as the results in the following section indicate, very accurate
solutions were obtained with minimal difficulty, a fact which suggests that any
ill conditioning that may exist is much less serious for these particular equations
than for other integral equations of the first kind.

25 FLM 69
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Fiaure 2. Ratio of numerically calculated and analytic drags for spheroids
22+ (z} +2%)/a® = 1 in axisymmetric flow with N equally spaced points.

4, Results
Azxisymmetric flows

For any axisymmetric flow, the only parameters in the numerical solution are
the number of points N at which the integral equations will be applied and the
locations x™ of these points. In order to isolate clearly the effect of N, the non-
optimal strategy of equal spacing (in the 1 direction) for the X, which makes
the solution a function of N only, was applied to the problem of a spheroid given
by a3+ (23 +23)/a® = 1 translating in the 1 direction. A comparison of the
numerical drag F, with the analytic drag F§ (analytic solutions will henceforth
be denoted by an asterisk) is shown in figure 2, from which it can be seen that,
for spheroids with axis ratios between 0-02 and 50-0, the error in the drag is less
than 1 9, for N > 10. For a sphere, any choice of N results in essentially no error,
which might be expected since f is constant in this case. The error is greatest
for very slender prolate spheroids, for which, as explained below, the policy
of spacing the points X at equal intervals is a poor one.

A more critical evaluation of the numerical method is provided by a comparison
of the numerically calculated local stress force with its analytic counterpart.
This is effected in figures 3 (a) and (b), where it is evident that the greatest errors
in f; occur, as expected, in regions where the gradient of f; is the largest (f is
identically zero and f, is zero to the accuracy of the calculations). Figures 4 (a)
and (b) indicate that the average (over N) local error decreases rapidly with
increasing NV, while figures 5 (@) and (b) give the maximum local error as a function
of N. The initially surprising result that the maximum error in f; for slender
prolate spheroids increases with N up to a certain point before starting to de-
crease results from the policy of equally spacing the points x™. That is, for
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Fraure 3. Numerically calculated stress force for (a) oblate and (b) prolate spheroids in
axisymmetrio flow. (], N = 4; A, N =6; O, N = 8; @, N = 16; x, N = 30;
analytic solution.

s

slender prolate spheroids, the gradient in f¥ is very large near x; = +1-0 {in
fact, f*(x, = + 1-0) = O((a®Ina)™1) as a— 0], and thus, as the number of equally
spaced points along the axis is increased, those near x; = +1:0 move into a
region of larger gradient in f;, with a resultant increase in error. When N be-
comes sufficiently large, however, the maximum local error starts to decrease

25-2
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Ficure 4. Average relative error in stress force for (a) oblate and (b) prolate
spheroids in axisymmetric flow with N equally spaced points.

with increasing N (numerical experiments indicate that for @ = 0-02 the maxi-
mum relative error in f; would increase to a value of approximately 0-08 at an
N of 120 before starting to decrease).

These results seem to suggest that the points x®™ should be concentrated in
regions where the gradients of f; are the greatest, i.e. near the ends for prolate
spheroids. This idea was tested by dividing a prolate spheroid of axis ratio
0-10 into &V equal segments as before and then inserting one additional point
at each end between the two points nearest the end. This policy, though certainly
not optimal, results in the improvements shown in figures 6(a) and (). It is
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Fieure 5. Maximum relative error in stress force for (a) oblate and (b) prolate
spheroids in axisymmetric flow with N equally spaced points.

logical to expect, and this was confirmed by experiment, that by concentrating
even more points near the ends the error could be reduced still further. For
example, using 40 points for @ = 0-1, the largest relative error in f; could be
made less than 0-01.

Numerical experiments were also performed for axisymmetric flow parallel
to the axis of a finite cylinder. In this case, since R(y,) is not single valued,
(2.14) no longer applies but rather must be replaced by its analogue obtained
from (2.11) following the procedure outlined in the previous section. Neither
the vertical faces at the ends of the cylinder nor the corners of the cylinder caused
any difficulty as long as none of the x™ were located on the corner. Gluckman
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F16UrE 6. (a) Ratio of numerically calculated and analytic drags and (b) maximum relative
error in stress force for two different policies for forming the surface elements. ¢ = 0-1.
A, equally spaced elements; B, one additional point near each end, otherwise equally

spaced elements.

‘

et al. also obtained numerical solutions to this particular problem, though their
method, in order to achieve good accuracy, requires that any vertical surfaces
be treated differently from non-vertical surfaces. Also their method had to be
modified for cylinders of aspect ratio > 10, and even then it did not lead to
convergence. As in Gluckman et al. the dimensionless drag K on a cylinder is
defined as the ratio of the terminal settling velocity of the cylinder to that of
a sphere with the same volume as the cylinder or, equivalently, as the ratio of



Stokes flow past an arbitrary particle 391
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Frgure 7. Stress force for a cylinder (L/D = 1-0) with N points equally spaced along
perimeter. A, N = 16; X, N = 24; [, N = 32; O, N = 40; @, N = 80; —, numerical
solution with N = 80 but collocation points concentrated near s = 1.

the drag on a sphere with the same volume as the cylinder to that on the cylinder
when both are exposed to the same uniform external low. Thus
K = 6mr,W,/F,(cylinder), (4.1)
where 7, = ($;LD?? is the radius of the sphere and L and D are the length and
diameter of the cylinder. As might be expected In view of the discontinuities
in n,; at the corner, f is, as shown in figure 7, a sensitive function of position near
the corner. As a result, a policy of spacing the X™ at equal intervals along the
perimeter is rather inefficient, and experiments show that increased accuracy
can be achieved by concentrating the points near the corner. Table 1 gives K for
additional aspect ratios and shows good agreement of the results with those of
Gluckman ef al. Also compared in table 1 are the present results and those
obtained by Batchelor (1970),
L L\ L\—2] (D\}
' — (1-5)% = _0 -0 el = —

K’ = (1:5) [lnD 0-114 0178(lnD> +0(lnD> ](L> , (4.2)
using slender-body theory. In all cases, the difference between K and K’ is of
the same order as the error in (4.2).

Three-dimensional flows

The three-dimensional problem is, of course, much more formidable compu-
tationally since a two-dimensional integral equation must be solved. 4 priori
it might be expected that, if N points are required for a certain accuracy in the
axisymmetric case, approximately N2 points would be required to achieve
comparable accuracy in the three-dimensional case. Since 20 might be considered
a typical value of N for axisymmetric flows, this would indicate that an N of
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Aspect Number of Numerical
ratio surface drag Gluckman et al.t
L|D elements, N K Ke(Ny) K’
0-5 8 0-879 0-877 —
16 0-875
24 0-873
32 0-873
1-0 8 0-962 0-960
16 0-956
24 0-955
32 0-954
40 0-954
2:0 8 0-986 0-Y8b —
16 0-980
24 0-978
32 0-977
40 0-977
40 8 0-938 0-929 —
16 0934
24 0-932
32 0-932
10-0 8 0-794 0-932 (1) 0-781
16 0-789 0-876 (2)
24 0-788 0-855 (3)
32 0-788 0-837 (5)
20-0 8 0-659 0-695 (3) 0-658
16 0-650 0-683 (5)
24 0-649 0-674 (9)
32 0-649 0-668 (15)
400 8 0-528 0-539 (3) 0-518
16 0-513 0-531 (5)
24 0-510 0525 (9)
32 0-510 0-522 (15)
60-0 8 0-455 0-441
16 0-438
24 0-436
32 0-435
40 0-435
80-0 8 0-404 0-391
16 0-390
24 0-387
32 0-387
100-0 8 0-365 0-354
16 0-354
24 0-352
32 0-351
40 0-351

t For 10 < L/D < 40, N,, is the number of touching prolate spheroidal singularities
used by Gluckman et al. to approximate the cylinder.

TABLE 1. Drag results for finite cylinders. The collocation points X were distributed
non-uniformly with |x%~1 —x™| & |x — x‘+V| but such that the distance between the
collocation points at the centre of the cylinder was approximately 10 times the distance
between the collocation points near the corners.




Stokes flow past an arbitrary particle 393

3

Ficure 8. Simple shear flow past a prolate spheroid divided into
144 elements with 7, = 6, 75 = 3.

400 might be typical in three dimensions. This would lead to 1200 algebraic
equations, which in general would have to be solved directly. This, computa-
tionally, would be such a formidable task that smaller values of N would have
to be used, leading to an expected attendant decrease in accuracy. However,
as will be seen, the loss of accuracy isin many casesrelatively slight and not nearly
as large as might first be expected.

Because the use of an adaptive quadrature scheme is inherently inefficient
and since the calculation of the double integrals in (3.1) constitutes a significant
portion of the total computer time for most three-dimensional problems, a
simple product Gaussian rule, rather than an adaptive rule as was used in the
axisymmetric case, was employed to calculate the coefficients in the algebraic
system. Thus, the results in any three-dimensional problem depend on the
particular integration rule that is being used as well as on the number of ele-
ments into which the body is divided and on the geometry of these elements.
In addition, because of the extra dimension, the dependenceon the manner of
forming the N elements is more complex in three dimensions that in two.
Specifically, unlike the axisymmetric case, no simple policy for forming the A,,
could be found that rendered the solution a unique function of N. For example,
if a simple body such as a sphere in a simple shear is divided into N elements,
then merely rotating the lines dividing the A,, by a fixed amount will, in general,
yield slightly different results.

Numerical experiments were conducted on a prolate spheroid

2+ (@ +af)fa® =1

with U(Xx) = 8,,x,, which corresponds to a stationary prolate spheroid placed
symmetrically in a simple shear flow parallel to its major axis. As shown in
figure 8, the spheroid was divided into N = 8,7, elements by first using the
planes x; = 0, z, = 0 and «, = 0 to form eight symmetric regions, each of which
was subsequently divided to form the elements A,, by spacing the x™ at 3,
equal intervals in the 1 direction and at 74 equal intervals with respect to the
azimuthal angle 6.
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The two-dimensional integration formula which is most appropriate for a
given problem depends on the shape of the A,,. For elements which are approxi-
mately square in terms of the z,,0 cylindrical co-ordinates used, symmetric
product rules would appear to be most appropriate. In the present numerical
experiments, symmetric product Gaussian rules constructed from either four-
or eight-point one-dimensional formulae, thus using 16 and 64 points respectively,
were employed for spheroids with 0-2 < a < 1-0, while for the more elongated
elements associated with spheroids with axis ratios between 0-02 and 0-10,
either 3 x 8 or 4 x 16 product Gaussian formulae were used. In all the experi-
ments, the high-order formula in any pair was employed on the element con-
taining the singularity and the low-order formula for the remaining integrals.

Table 2 summarizes the results for the three-dimensional experiments and
shows that the couple 7'; normally had an error of approximately 19, or less.
The analytic total force F¥ on the particle is, of course, identically zero and,
indeed, the numerical total force F; was found to be zero to machine accuracy.
Also the largest relative errors in |f| and f; were normally less than 59, with an
average relative error of about 19,. However, since f, is typically one or two
orders of magnitude smaller than f;, while its absolute error is normally com-
parable with or less than the absolute error in f,, its relative error was naturally
somewhat larger. But, as may be seen by comparing the errors in |f| and f,
the errors in f, have a very slight effect on errors in the local stress force f.

Table 3 summarizes two experiments which demonstrate the relative insen-
sitivity of the results to the manner in which the elements A,, were formed and
to the particular integration formula used. In the first experiment, which was
intended to consider the effect of element shape, the surface elements of a sphere
were constructed in two different ways: %, = 27, {19 =1,2,3) and 7, =7,
(7 = 2,3, 4). As can be seen, the results are nearly identical. The second experi-
ment used the same elements on a spheroid with @ = 0-1 but employed one of
two different integration formulae: either a 3 x 8 or a 4 x 4 product Gaussian
rule. Again the results are very similar, with, as might be expected, the 3 x 8
formula being slightly superior. However, for more elongated spheroids the 3 x 8
formula is definitely more accurate and in the case @ = 0-05 gives errors which
are roughly half as large as those resulting from use of the 4 x 4 formula. It was
also found that, for 0-1 < @ < 10, the results were insensitive to the element
shape for elements whose length-to-height ratio was between 0-1 and 10-0,
and that, for these element shapes, it made little difference whether the 4 x 4
or the 3 x 8 integration formula was employed.

A three-dimensional problem of practical significance, owing to its occurrence
in nature, and its suitability for experimental investigation, is that of deter-
mining the angular velocity of a finite circular cylinder freely suspended in a
general linear shear flow. As has been demonstrated experimentally (Goldsmith
& Mason 1967) and theoretically (Brenner 1964b), the expression for the angular
velocity contains a single unknown scalar, the equivalent axis ratio ,, defined
as the axis ratio of that spheroid which would, when freely suspended in the
same flow field at infinity, experience the same periodic motion as the cylinder.
Unfortunately, if the cylinder has length L and diameter D, the determination
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L 7, 8Tvq 4TyeeIn L/D
D N LD Ty} TYL*  TL LD* aLD?
1-00 144 1-16 26-6 0 19-8 8:3 0
112 1-15 26-4 20-1
80 1-13 25-9 20-2
40 1-12 25-0 20-0
1-67 144 1-02 16-3 31-7 5-60 5-1 0-85
112 1-02 16-2 561
80 1-01 15-9 5-57
40 1-02 159 5-53
2-50 144 0-939 11-6 13-9 2-09 3-8 1-4
112 0-938 11-5 2-09
80 0-938 11-3 2-06
40 0-928 11-3 2-11
10-0 144 0-749 4-74 4-39 8-4x 102 2-8 2-1
112 0-748 4-72 84
80 0-745 4-70 85
40 0-726 4-66 8-9
16-7 144 0-702 373 3:48 2:7%x10-2 27 2-2
112 0:700 371 2-7
80 0-694 3-67 2-7
40 0-673 3-65 2:9
25-0 144 0-657 3-19 2-99 1-2x 102 2-8 2-3
112 0:657 3-18 1-2
80 0-655 317 1-2 -
40 0-661 311 1-1
50-0 144 0-612 2:52 2-40 2:7x 103 27 2-5
112 0-611 2-51 2.7
80 0:605 2:50 2.7
40 0-621 2-48 2-6
100-0 144 0-574 2:07 2-01 6-3 x 10 2:8 2-6
112 0-573 2-07 6-3
80 0-575 2-08 6-3
40 0-564 2-16 6-8
166-7 144 0-555 1-84 1-79 2-1x 104 2:9 2-5
112 0-560 1-86 21
80 0-570 1-88 2-1
40 0-568 1-88 2-1

TaBLE 4. Equivalent axis ratios of circular cylinders

of 7, is analytically intractable for L/D = O(1); furthermore, as discussed by
Cox (1971), the problem cannot be solved completely using slender-body theory
when L/D > 1, owing to the presence of the blunt ends of the cylinder. Cox
(1971) has shown, however, that r, is given by

Te = (Té/Tg)i) (43)

where T; and Tj are, respectively, the torques experienced by a stationary
cylinder centred at the origin with axis in the 1 direction when exposed to
simple shear flows at infinity given by

Ui= —8ux, Uj=20,2, (4.40, b)
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The problem (2.1) with (4.4) was solved numerically using the same integration
methods and the same procedure for constructing the surface elements as in the
previous example. The results are shown in figure 9, where they are compared
with the available experimental data. Clearly, the agreement with experiment
is very good for L/D < 100, but for L/D > 100, r, does not fall as rapidly with
increasing L/D as the recent experimental data of Harris & Pittman (1975).

The numerical solution definitely becomes more difficult at very large L/D,
for at least two reasons. First, as seen in all the previous solutions, numerical
errorsincrease as the elements A, become more elongated. Second, the evaluation
of T is subject to more errors because the contribution to 7% from the forces
acting near the corners of the cylinder becomes relatively more important as
L/D increases, and the calculation of these forces is, for all aspect ratios, the
most difficult, and hence the most error prone part of the computations. Never-
theless, the numerical results appear reliable because of their excellent agree-
ment with the experimental data of Anczurowski & Mason (1968) and the fact
that, as will be seen below, they are entirely consistent with the slender-body
analysis of Cox. It is felt, therefore, that the findings of Harris & Pittman,
especially at larger values of L/D, should be looked at anew.

Table 4 summarizes the numerical results and compares T'; with the value
given by slender-body theory (Cox 1971):

, wI3[ 1 0-447 T L\-3
Tc=T[1nL/D+(1nL/D)2+O(ln5) ] (4.5)

In all cases, Ty and T, agree to O[(In L/D)-3]. In fact, if T}, is written to higher

order as
, wl3 1 0-447 0-10 - L\
Te=—5 [lnL/D LD} (1nL/D)3+0<1nE) ] (4.6)

agreement to three significant figures is obtained for L/D > 25

The slender-body analysis of Cox (1971) cannot determine T'; quantitatively
for blunt bodies since it is unable to handle properly the ends of the cylinder,
which make a major contribution to the torque. Cox observes that, for large
L|D, Ty is equal to the torque T,q due to forces acting on the ends, i.e.

T3 & Topa = 3o, LD?, (4.7
c )

where «, is a constant, whose value Cox estimated to be 5-45 by using (4.3),
(4.5) and (4.7) and fitting the experimental data of Anczurowski & Mason
(1968). On a strictly empirical basis, Harris & Pittman (1975) later proposed that

Ky
4 2
Tg = 2L LD [1 30T 2L/D] (4.8)
and determined the constants oy = 9-0 and Ky = —1-21 from their experi-

mental data and those of Anczurowski & Mason.
However, if T3 is decomposed into

T:’i’ = end+Ts1de: (4-9)
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Figure 9. Equivalent axis ratio of circular cylinders. A, Anczurowski & Mason (1968);

O, Harris & Pittman (1975); — @—, numerical results; — — —, equation (4.12).

where T4, is the contribution to the torque of the forces acting on the sides of
cylinder, Cox’s analysis indicates that

" ky mky, LD? L)—

Tona = —LD Tide = i L/D 0[(1115, ] , (4.10)
where the constants k, and %, can be independenfly determined from the
numerical results. As seen in table 4, k; and k, are 2-8 and 2-6 respectively with
an error estimated to be less than 4 9. Therefore

T; = 0-35LD? [1 TS 5L71)] (4.11)
which is of the same form as the expression proposed empirically by Harris &
Pittman. However, since (4.8) should be viewed as the sum of T'qq and Tyqe,
oy and Ky are necessarily positive, in contrast to Harris & Pittman’s empirical
result Ky = —1:21. On the other hand, the large discrepancy between the
values k; = 2-8 and «, = 5-45 proposed by Cox is due to the fact that at the
largest aspect ratio studied by Anczurowski & Mason (&~ 100), T4 and T%g.
are, according to the present calculations, still of the same order of magnitude,
and thus the assumption T3 ~ T, 4 is invalid.
By combining (4.3), (4.5) and (4.11) we therefore obtain, finally,

ool i) (1)) e

for large L/D. As expected, and as shown in figure 9, equation (4.12) fits the
numerical results smoothly and does not fall off as rapidly as the data of Harris
& Pittman,
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All computations were performed on Stanford’s IBM 360/67, and by taking
advantage of the symmetry in the three-dimensional problems, no single experi-
ment required more than one minute of computer time. In fact, a typical axisym-
metric calculation with 30 points or a three-dimensional experiment with 60
points required approximately 15-20 s.

This work was supported in part by the National Science Foundation under
grants GK 41781 and GK 36515X and by an N.S.F. fellowship to G.K.Y. The
authors are grateful to Howard Brenner for his helpful suggestions.

Appendix A. Proof that (2.9) has a unique solution

Since, as shown by Odqvist, (2.1) and (2.2) have a solution v, it follows that
fi = T;;(v)n; is a solution of (2.9). To show that this solution is unique it is
sufficient to show that the homogeneous equation

ffs, [ N 3«3(” yk)] #:(y)dS,, xef,, (A1)

has only the trivial solution. Consider the velocity field w, formed from a solu-
tion ¢, of (A 1),

ff [ 1,k yi):j(xk Ye ] ¢1 XGQ, (A 2)
Sp rﬂ?U
and its associated stress field
Tt] ff Zji) (xk_yk) ¢k(y) dSy, xXe Q, (A 3)
Sp xy
which has a jump at S, given by
lim 7(W(X)) n;(X) = 3¢s(Xo) + T4, (W(X)) |5, 75(X0), XEQ, X,€8,. (A4)

XXy

Now w;(X)—0 as x—>00 and wy(X) = 0 on §, by (A 1) since the single-layer
potential is continuous at S,,. Therefore, since w;, together with its associated
pressure, which is equal to a single-layer potential with density ¢,, satisfies
(2.1) and is zero on §,, and at infinity, the uniqueness proof of Odqvist for the
Stokes problem implies that w;(x) and hence T,;(w) must be identically zero
everywhere. Thus ¢, is also identically zero by (A 4).

Appendix B

We give values of A/M(x™,¢) and VP (x™,¢) representing those parts of
AP (x™) and VP (x™) which result from integration over the planar square
S, centred at x™ with sides of length 2¢ and along lines of constant x, and
constant §. To begin with, from (3.1),

(m) lm
A(m) X(m) 6 — _ff [ —Y; )( yk)] dSy (B 1)
Se z(”’)y

a:(’")y
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Next, if the actual surface of the particle is given by R(x,, 8), it can be shown that

Ty COS )
T~ = (—-1 ing),}, (B 2(1)
o rymsine 1y, R'cosw
Xo—Yy = (nE+n2)t  (mE+nd)E(1+R2Y (B 2b)
— - R/
Zy— gy = T2y Mo SIN @ ToyMa B cos® (B 20)

(m+nd)t  (nE+nd)(1+RY

where 0 = tan—1x,/z,, R’ = 0R[ox,, all quantities are evaluated at x™, and w is
the angle between r_, and the projection of the negative 1 axis onto S,. When
substituted into (B 1), these expressions yield

A("‘)(x(m>e)——[l ‘/2+1H2+ ! ]

NJ2—1 1+ R

= 0-2805¢ [2+ R’z] , (B 3)
—0:2805n,R’e —0-2805n, R'e

m) _ 2 (m) _ 3

AIZ [1 +RI2] (n§+n§)i’ 13 [1 +R’2] (ng_i_n%),}’ (B 4)’ (B 5)
2 22y o2

m . . 2 M]

A 0-2805¢ [u + W) {1+ R (B 6)
—0-2805en,n

(m) —_ 2'%3 7
A23 (n% +n§) [1 +R/2] ’ (B )

+ R’2 (nd +n2)]
A = 0-2805¢ | 2 -—2-—— Bs
% [ +( n§+n) {1+ R} 9

To calculate V@ (x™, ), use (2.10) to obtain
Vo (x (s —¥s) (@5 —Y3) (@ = Ya) 75(Y) [G(Y) = G(x) + UiX)] 5 o
47T Sp ’rg v
=¥;) (@~ Yi) 7(¥) [U(y) — Ui(X)]
‘e f f . as, (B 9)
_ ” (=) (23 () O L) = Ui
Sp—Se Y
, U. -U(x

47TJ‘J‘SE y])( T?g:) ]( )[ z( ) ( )]dSy (B 10)

Clearly V{?(x) is easily calculated numerically if the integral over S, can be
evaluated. But

G (x, ¢) 513_” j j (@™ —y) (@ —y;) @ —yi) n5(¥) [Uily) = Uy(x)] as, = 0(e)

r.t(m) "

(B 11)
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and could be neglected to a first approximation. However if U(X) = Cj;x;, then
the integration in (B 11) can be performed analytically, yielding

G1(x™,¢) = — A,€[0-6166B, + 0-2251By], (B 12)
Gy(x™, ¢) = —€[{0-6166B, +0-2251B;} A, +0-2251B,4,], (B 13)

Gy(x, ¢) = —¢e[{0-6166B, + 0-2251B,} 4,+ 0-2251B,4,], (B 14)
where
1 A - —n 4. - Ng
(1+R2¥ 2T (mE+nd)E (14 R 87 (mE4nd)¥’

4, =

A, = — g’ [ L T
YT nd (L REY TP (n 4 mg)b

Ay =ny A +n,4,+n54,,

Ag = 4,(C1 4,1+ Cpp Ay +Ci3 Ay 4 Cy 434 Cy1 4))
+ Ay(Cop Ay + Cog Ay + Cyp Ay) + Cyp A,

Ay = Ay(Cop Ag+ Coa A5+ Cy A5) +Cyy 43,

A= A41(Crp Ay +Ci3 Ag+Coy Ay +Cyy A5) + 20334, 45
+ Ay(2Cy A3+ Cog A5+ Cyp A ) + Ay(Cog Ay + O3 4y),

Bl = AGAS: Bz = AsAm: Ba = AsAo:

with all quantities again evaluated at x®.
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